A novel class of apical sodium--dependent bile salt transporter inhibitors: 1-(2,4-bifluorophenyl)-7-dialkylamino-1,8-naphthyridine-3-carboxamides

نویسندگان

  • Hongtao Liu
  • Guoxun Pang
  • Jinfeng Ren
  • Yue Zhao
  • Juxian Wang
چکیده

The apical sodium--dependent bile acid transporter (ASBT) is the main transporter to promote re-absorption of bile acids from the intestinal tract into the enterohepatic circulation. Inhibition of ASBT could increase the excretion of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. Therefore, ASBT is an attractive target for developing new cholesterol-lowering drugs. In this report, a series of 1-(2,4-bifluorophenyl)-7-dialkylamino-1,8-naphthyridine-3-carboxamides were designed as inhibitors of ASBT. Most of them demonstrated potency against ASBT transport of bile acids. In particular, compound 4a1 was found to have the best activity, resulting in 80.1% inhibition of ASBT at 10 μmol/L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arylsulfonylamino-benzanilides as inhibitors of the apical sodium-dependent bile salt transporter (SLC10A2).

The apical sodium-dependent bile salt transporter (ASBT) plays a pivotal role in maintaining bile acid homeostasis. Inhibition of ASBT would reduce bile acid pool size and lower cholesterol levels. In this report, a series of novel arylsulfonylaminobenzanilides were designed and synthesized as potential inhibitors of ASBT. Most of them demonstrated great potency against ASBT's bile acid transpo...

متن کامل

Bicyclic 1-Hydroxy-2-oxo-1,2-dihydropyridine-3-carboxamide-Containing HIV-1 Integrase Inhibitors Having High Antiviral Potency against Cells Harboring Raltegravir-Resistant Integrase Mutants

Integrase (IN) inhibitors are the newest class of antiretroviral agents developed for the treatment of HIV-1 infections. Merck's Raltegravir (RAL) (October 2007) and Gilead's Elvitegravir (EVG) (August 2012), which act as IN strand transfer inhibitors (INSTIs), were the first anti-IN drugs to be approved by the FDA. However, the virus develops resistance to both RAL and EVG, and there is extens...

متن کامل

4-Amino-1-hydroxy-2-oxo-1,8-naphthyridine-Containing Compounds Having High Potency against Raltegravir-Resistant Integrase Mutants of HIV-1

There are currently three HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) approved by the FDA for the treatment of AIDS. However, the emergence of drug-resistant mutants emphasizes the need to develop additional agents that have improved efficacies against the existent resistant mutants. As reported herein, we modified our recently disclosed 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridin...

متن کامل

7-[4-(5,7-Dimethyl-1,8-naphthyridin-2-yl­oxy)phen­oxy]-2,4-dimethyl-1,8-naphthyridine methanol disolvate

The title compound, C(26)H(22)N(4)O(2)·2CH(3)OH, was synthesized and characterized by (1)H NMR spectroscopy and X-ray structure analysis. There is one half-mol-ecule in the asymmetric unit with a centre of symmetry located at the centre of the benzene ring. The two bridged naphthyridine ring systems are in an anti-parallel orientation. In the crystal structure, O-H⋯N, C-H⋯O and C-H⋯N inter-acti...

متن کامل

Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors

Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017